If you have ever heard a car engine without a muffler, you know what a huge difference a muffler can make to the noise level. Inside a muffler, is a deceptively simple set of tubes with some holes in them. These tubes and chambers are as finely tuned as a musical instrument. They are designed to reflect the sound waves produced by the engine in such a way that they partially cancel themselves out, Mufflers use advanced technology to reduce & expel noise.
Where Does the Sound Come From?
Sound is a pressure wave formed from pulses of alternating high and low air pressure. In an engine, pulses are created when an exhaust valve opens and a burst of high-pressure gas suddenly enters the exhaust system. The molecules in this gas collide with the lower-pressure molecules in the pipe, causing them to pile up on each other. They in turn, pile up on the molecules a little further down the pipe, leaving an area of low pressure behind. In this way, the sound wave makes its way down the pipe much faster than the actual gases do.
When these pressure pulses reach your ear, the eardrum vibrates back and forth. Your brain interprets this motion as sound. Two main characteristics of the wave determine how we perceive the sound:
- Sound wave frequency - A higher wave frequency simply means that the air pressure fluctuates faster. The faster an engine runs, the higher the pitch we hear. Slower fluctuations sound like a lower pitch.
Air pressure level - The wave's amplitude determines how loud the sound is. Sound waves with greater amplitudes move our eardrums more, and we register this sensation as a higher volume.
How Can You Cancel Out Sound?
It is possible to produce a sound wave that is exactly the opposite of another wave. This is the basis for those noise-canceling headphones. Take a look at the figure below. The wave on top and the second wave are both pure tones. If the two waves are in phase, they add up to a wave with the same frequency but twice the amplitude. This is called constructive interference. But, if they are exactly out of phase, they add up to zero. This is called destructive interference. At the time when the first wave is at its maximum pressure, the second wave is at its minimum. If both of these waves hit your ear drum at the same time, you would not hear anything because the two waves always add up to zero.
Inside a Muffler
Located inside the muffler is a set of tubes. These tubes are designed to create reflected waves that interfere with each other or cancel each other out. Take a look at the inside of this muffler:
The exhaust gases and the sound waves enter through the center tube. They bounce off the back wall of the muffler and are reflected through a hole into the main body of the muffler.
They pass through a set of holes into another chamber, where they turn and go out the last pipe and leave the muffler.
A chamber called a resonator is connected to the first chamber by a hole. The resonator contains a specific volume of air and has a specific length that is calculated to produce a wave that cancels out a certain frequency of sound.
When a wave hits the hole, part of it continues into the chamber and part of it is reflected.
The wave travels through the chamber, hits the back wall of the muffler and bounces back out of the hole.
The length of this chamber is calculated so that this wave leaves the resonator chamber just after the next wave reflects off the outside of the chamber. Ideally, the high-pressure part of the wave that came from the chamber will line up with the low-pressure part of the wave that was reflected off the outside of the chamber wall, and the two waves will cancel each other out.
Waves canceling inside a simplified muffler
In reality, the sound coming from the engine is a mixture of many different frequencies of sound, and since many of those frequencies depend on the engine speed, the sound is almost never at exactly the right frequency for this to happen. The resonator is designed to work best in the frequency range where the engine makes the most noise; but even if the frequency is not exactly what the resonator was tuned for, it will still produce some destructive interference.
Some cars, especially luxury cars where quiet operation is a key feature, have another component in the exhaust that looks like a muffler, but is called a resonator. This device works just like the resonator chamber in the muffler -- the dimensions are calculated so that the waves reflected by the resonator help cancel out certain frequencies of sound in the exhaust.
There are other features inside this muffler that help it reduce the sound level in different ways. The body of the muffler is constructed in three layers: Two thin layers of metal with a thicker, slightly insulated layer between them. This allows the body of the muffler to absorb some of the pressure pulses. Also, the inlet and outlet pipes going into the main chamber are perforated with holes. This allows thousands of tiny pressure pulses to bounce around in the main chamber, canceling each other out to some extent in addition to being absorbed by the muffler's housing.
Backpressure and Other Types of Mufflers
One important characteristic of mufflers is how much backpressure they produce. Because of all of the turns and holes the exhaust has to go through, mufflers like those in the previous section produce a fairly high backpressure.
This subtracts a little from the power of the engine.
There are other types of mufflers that can reduce backpressure. One type, sometimes called a glass pack or a cherry bomb, uses only absorption to reduce the sound. On a muffler like this, the exhaust goes straight through a pipe that is perforated with holes. Surrounding this pipe is a layer of glass insulation that absorbs some of the pressure pulses. A steel housing surrounds the insulation.
Diagram of glass pack muffler
These mufflers produce much less restriction, but do not reduce the sound level as much as conventional mufflers.
Active Noise-Canceling Mufflers
There have been a few experiments with active noise-canceling mufflers, especially on industrial generators. These systems incorporate a set of microphones and a speaker.
The speaker is positioned in a pipe, which wraps around the exhaust pipe so that the sound from the exhaust comes out in the same direction as the sound from the speaker. A computer monitors a microphone positioned before the speaker and one positioned after the speaker. By knowing some things about the length and shape of the pipes, the computer can generate a signal to drive the speaker. This can cancel out much of the sound coming from the generator. The downstream microphone lets the computer know how well it is doing so it can make adjustments if needed.
Catalytic Converter

There are millions of cars on the road and each one is a source of air pollution. Especially in large cities, the amount of pollution that all the cars produce together can create big problems.
To solve those problems, cities, states and the federal government create clean-air laws that restrict the amount of pollution that cars can produce. Over the years, automakers have made many refinements to car engines and fuel systems to keep up with these laws. One of these changes came about in 1975 with an interesting device called a catalytic converter. The job of the catalytic converter is to convert harmful pollutants into less harmful emissions before they ever leave the car's exhaust system.
Pollutants Produced by a Car Engine
In order to reduce emissions, modern car engines carefully control the amount of fuel they burn. They try to keep the air-to-fuel ratio very close to the stoichiometric point, which is the ideal ratio of air to fuel. Theoretically, at this ratio, all of the fuel will be burned using all of the oxygen in the air. For gasoline, the stoichiometric ratio is about 14.7:1, meaning that for each pound of gasoline, 14.7 pounds of air will be burned. The fuel mixture actually varies from the ideal ratio quite a bit during driving. Sometimes the mixture can be lean (an air-to-fuel ratio higher than 14.7), and other times the mixture can be rich (an air-to-fuel ratio lower than 14.7).
The main emissions of a car engine are:
- Nitrogen gas (N2) - Air is 78-percent nitrogen gas, and most of this passes right through the car engine.
- Carbon dioxide (CO2) - This is one product of combustion. The carbon in the fuel bonds with the oxygen in the air.
- Water vapor (H2O) - This is another product of combustion. The hydrogen in the fuel bonds with the oxygen in the air.
These emissions are mostly benign, although carbon dioxide emissions are believed to contribute to global warming. Because the combustion process is never perfect, some smaller amounts of more harmful emissions are also produced in car engines. Catalytic converters are designed to reduce all three:
- Carbon monoxide (CO) is a poisonous gas that is colorless and odorless.
- Hydrocarbons or volatile organic compounds (VOCs) are a major component of smog produced mostly from evaporated, unburned .fuel.
How Catalytic Converters Reduce Pollution
In chemistry, a catalyst is a substance that causes or accelerates a chemical reaction without itself being affected. Catalysts participate in the reactions, but are neither reactants nor products of the reaction they catalyze. In the human body, enzymes are naturally occurring catalysts responsible for many essential biochemical reactions [source: Chemicool].
In the catalytic converter, there are two different types of catalyst at work, a reduction catalyst and an oxidation catalyst. Both types consist of a ceramic structure coated with a metal catalyst, usually platinum, rhodium and/or palladium. The idea is to create a structure that exposes the maximum surface area of catalyst to the exhaust stream, while also minimizing the amount of catalyst required, as the materials are extremely expensive. Some of the newest converters have even started to use gold mixed with the more traditional catalysts. Gold is cheaper than the other materials and could increase oxidation, the chemical reaction that reduces pollutants, by up to 40 percent [source: Kanellos].
Most modern cars are equipped with three-way catalytic converters. This refers to the three regulated emissions it helps to reduce.
The reduction catalyst is the first stage of the catalytic converter. It uses platinum and rhodium to help reduce the NOx emissions. When an NO or NO2 molecule contacts the catalyst, the catalyst rips the nitrogen atom out of the molecule and holds on to it, freeing the oxygen in the form of O2. The nitrogen atoms bond with other nitrogen atoms that are also stuck to the catalyst, forming N2. For example:
2NO => N2 + O2 or 2NO2 => N2 + 2O2
2NO => N2 + O2 or 2NO2 => N2 + 2O2

The oxidation catalyst is the second stage of the catalytic converter. It reduces the unburned hydrocarbons and carbon monoxide by burning (oxidizing) them over a platinum and palladium catalyst. This catalyst aids the reaction of the CO and hydrocarbons with the remaining oxygen in the exhaust gas. For example:
2CO + O2 => 2CO2 There are two main types of structures used in catalytic converters -- honeycomb and ceramic beads. Most cars today use a honeycomb structure.
Controlling Pollution and Improving Performance
The third stage of conversion is a control system that monitors the exhaust stream, and uses this information to control the fuel injection system. There is an oxygen sensor mounted upstream of the catalytic converter, meaning it is closer to the engine than the converter. This sensor tells the engine computer how much oxygen is in the exhaust. The engine computer can increase or decrease the amount of oxygen in the exhaust by adjusting the air-to-fuel ratio. This control scheme allows the engine computer to make sure that the engine is running at close to the stoichiometric point, and also to make sure that there is enough oxygen in the exhaust to allow the oxidization catalyst to burn the unburned hydrocarbons and CO.
The catalytic converter does a great job at reducing the pollution, but it can still be improved substantially. One of its biggest shortcomings is that it only works at a fairly high temperature. When you start your car cold, the catalytic converter does almost nothing to reduce the pollution in your exhaust.
One simple solution to this problem is to move the catalytic converter closer to the engine. This means that hotter exhaust gases reach the converter and it heats up faster, but this may also reduce the life of the converter by exposing it to extremely high temperatures. Most carmakers position the converter under the front passenger seat, far enough from the engine to keep the temperature down to levels that will not harm it.
Preheating the catalytic converter is a good way to reduce emissions. The easiest way to preheat the converter is to use electric resistance heaters. Unfortunately, the 12-volt electrical systems on most cars don't provide enough energy or power to heat the catalytic converter fast enough. Most people would not wait several minutes for the catalytic converter to heat up before starting their car. Hybrid cars that have big, high-voltage battery packs can provide enough power to heat up the catalytic converter very quickly.